
Run your artisan instant messaging

service for your friends & family

Fleeing Whatapp due to their policy changes? Tired of the

never ending roam between the actual trendy instant

messaging app? Here is a simple, elegant solution: run your

own server, onboard your friends and family, and live happily

ever after.

1 of 21

Chat systems should be able to talk across one

another, why are they not?

You probably have used email before. I have multiple email addresses, among them

mail@example.net and petermolnar.eu@gmail.com . It's perfectly normal that I will be

able to send a mail from one another, even though these email addresses are on

different domain (example.net vs gmail.com), different servers, and different are the

people running them.

There's a similar case with SMS: nowadays I expect that I'd be able to send a text to

anyone in the world who's number I know, and if I'm using the international number

format correctly. +44 (UK) to +36 (Hungary), or +49 (Germany) to +1 (USA) - it should

all work. I have to admit, I don't know if sending a text to mainland China works; I

never tried, but I'd believe it does.

When it comes to instant messages, this was never the case, even though it has been

possible for a long time - just disabled by most providers.

Around 23 years ago I launched ICQ 98, and the people I could interact with were the

people on ICQ. If they were on AIM, I'd need to launch AIM. Later MSN, Skype, Gtalk

came onto play, all before mobile took off.

Somewhere down the road fantastic developers had enough of needing to use many

software for the same purpose, and thus multi-protocol instant messengers happened,

notably: Trillian[^1], Pidgin[^2], Miranda[^3]. Since then Trillian became yet another

instant messaging protocol (et tu, Brute?!), Miranda got heavily neglected. Pidgin, or,

more specifically, libpurple, the library behind it, is doing acceptably well, and can be

made to connect to "modern" walled garden services, such as Discord, Slack, Signal,

or even Whatsapp[^4]

2 of 21

mailto:mail@example.net
mailto:petermolnar.eu@gmail.com

This is how my Pidgin, my multi-protocol application looked in 2020. Wouldn't it be

simpler to have only one for work, and another for personal?

When smartphones started to become widely available, the messenger space grew

exponentially, fuelled by "free" SMS and calls. Now we have more instant

messengers, then ever, and they can only, and strictly only be used within the same

system, many are mobile "exclusive": Whatsapp, Viber, Telegram, Signal, new ICQ,

Google Talk Hangouts Allo Duo Meet Chat (I think it's called Chat at the moment),

Threema, Facebook Messenger, QQ, WeChat - the list is endless.

There was a brief, interesting period of time, namely when Facebook introduced their

chat, Gtalk was still called Gtalk, and Whatsapp was still just starting: they all used the

very same underlying standard, called XMPP[^5]. XMPP is not an app; it's more like

HTTP and HTML; a wire frame, so people can build their own apps on top of it. It has a

feature that sadly none of the three mentioned service provided, called federation: it

means that just like email, it should have been possible to talk from your Whatsapp

with someone on Gtalk. Since then, all three of them abandoned XMPP, and made

different, incompatible with each other systems.

3 of 21

This feature then was disabled (EDIT: with the exception of Google Talk in 2006, that

had federation until it's demise[^6]); probably to train people to associate an app with

the service behind it. Many of us know that the internet can be accessed with many

browsers - Edge, Internet Explorer, Safari, Chrome, Firefox. Much less know that

nearly ever email service, including Gmail, or Outlook, can also be accessed with

different programs, like Apple Mail[^7], or K9[^8] on android. With instant messengers,

using a 3rd party client sometimes even leads to instant ban. If you think of it, it's

completely insane.

What can be done to address the fragmented nature of instant

messaging?

The answer is simple, but the execution is not at all, and it needs effort from all of us.

We need to return to smaller service providers. Find a firm where you'll know real

people, where you'll know the faces to turn to if you have a problem. There are so

many stories about people locked out from their accounts on Facebook without

any option to appeal that it's frightening[^9]. These days places like https://

conversations.im/ is a good start for such provider.

Use a provider which allows your account to talk to other accounts on the same

network - it's called federation. (See below)

Choose an app you like (see later), not one someone wants to force on you.

If you can, run your own service, and do it for friends, and family as well.

What are the networks capable of talking to each other?

At the moment there are two main messaging ecosystems which can do federation

and accepts many clients: XMPP and Matrix. They cannot (yet?) talk to one another.

There are fundamental philosophical differences in their approach, which can be

summarised as:

and XMPP server is nothing, but a relay station. It barely stores any data, it's

purpose is to allow the data to flow through it to the clients, and lets the client

decide what to do.

a Matrix server, on the other hand, stores as much of this data on the server side

as possible, so the clients never have to worry about losing data from their

devices.

I prefer the approach of XMPP.

1.

2.

3.

4.

•

•

4 of 21

https://conversations.im/
https://conversations.im/

About modern XMPP clients

One of the beautiful benefits of using a service that allows, sometimes even

encourages, using the application you prefer, is that we can decide based on our

needs and likes.

There have been many critical voices aimed at XMPP, mainly like "too late to add end-

to-end encryption". This is a complex question, because in fact XMPP was one of the

first things to offer encryped messaging - PGP based -, but it was very difficult to use.

A more modern approach, borrowed from Signal, arrived later, and it's called OMEMO.

There are now many client supporting OMEMO encryption[^10], providing basically

transparent, secure chat to many.

Another feature that many waited a long time was voice and video chat - but this,

again, has a similar story to encryption. Jingle[^11] is a very old addition to the XMPP

standard, so old, that it doesn't work with Pidgin any more - the relevant Pidgin part

was built around a media library that has been dead for over a decade, namely

gstreamer-0.1 -, but on mobile clients, this feature was missing for a long time. A

notable exception is AstraChat[^12] which offered it for quite a while, but in return, it

still doesn't offer e2e encryption.

The point is: in 2020, XMPP clients on mobile or desktop are up to all needs, all

requirements, and are certainly much easier to use, then they used to be even just a

few years ago.

The clients I'd recommend these days

Conversations (or a derivative of it) for Android

https://play.google.com/store/apps/details?id=eu.siacs.conversations

£2.19

https://f-droid.org/en/packages/eu.siacs.conversations/ - free

aTalk for Android

https://play.google.com/store/apps/details?id=org.atalk.android

https://f-droid.org/en/packages/org.atalk.android/

Siskin for iOS:

https://apps.apple.com/us/app/tigase-messenger/id1153516838

Dino or Gajim for desktop:

https://dino.im/

https://gajim.org/download/

•

◦

▪

◦

•

◦

◦

•

◦

•

◦

◦

5 of 21

https://play.google.com/store/apps/details?id=eu.siacs.conversations
https://f-droid.org/en/packages/eu.siacs.conversations/
https://play.google.com/store/apps/details?id=org.atalk.android
https://f-droid.org/en/packages/org.atalk.android/
https://apps.apple.com/us/app/tigase-messenger/id1153516838
https://dino.im/
https://gajim.org/download/

With a heavy heart, I'm not putting Pidgin on that list, because it's basically impossible

to get audio/video support for XMPP on it, and while I'll remain a heavy user of it due

to needing to connect to many networks, it is not the best choice if someone is looking

for a good, modern XMPP client.

There's an ever growing list of clients at https://xmpp.org/software/clients.html for more

options.

aTalk has an incredible FAQ at https://atalk.sytes.net/atalk/faq.html which probably

answers any and all questions one might have with XMPP from the user side.

6 of 21

https://xmpp.org/software/clients.html
https://atalk.sytes.net/atalk/faq.html

Running a service: prosody behind nginx

Notes and warnings

This is how I've done it; it's not guaranteed it'll work for you. If you get stuck, or want to

hire me to set it up for you, reach out to me at mail@petermolnar.net (that's both an

email and an XMPP address).

My server runs FreeBSD[^13], meaning most paths will be /usr/local/etc instead

of /etc as it would be on Debian or CentOS.

Prerequisites: access to DNS configuration

Running a webserver is usually simple, but those who'd ever set up an email server

know there are additional magic that needs to be added to the domain records. The

case of an XMPP server is not as complex as with email, but neither is so simple, with

a mere A record.

Base A (and AAAA records, if possible)

CNAMEs for subdomains used by components

Service records for the XMPP clients

dns
example.net. 1800 IN A your.server.ipv4.address

example.net. 1800 IN AAAA your.servers.ipv6.address

dns
proxy.example.net. 1800 IN CNAME example.net.

upload.example.net. 1800 IN CNAME example.net.

groupchat.example.net. 1800 IN CNAME example.net.

pubsub.example.net. 1800 IN CNAME example.net.

dns
_xmpp-client._tcp.example.net. 1800 IN SRV 1 1 5222

example.net.

_xmpps-client._tcp.example.net. 1800 IN SRV 1 1 5223

example.net.

7 of 21

mailto:mail@petermolnar.net

TXT record for BOSH

Prerequisites: nginx and SSL (letsencrypt) certificates

There are two topics not covered in this mini tutorial:

setting up nginx

obtaining SSL certificates from letsencrypt

There are many ways of doing both, and excellent tutorials are available.

nginx configuration to act as reverse-proxy for Prosody

Nginx is an ideal reverse proxy. By putting it in front of Prosody, we keep the ability to

serve websites, or web interfaces for our XMPP server, like movim[^14].

This is the minimum required configuration that goes inside a server { } block,

before the location / part for nginx to forward everything needed for Prosody:

_xmpp-server._tcp.example.net. 1800 IN SRV 1 1 5269

example.net.

dns
_xmppconnect.example.net. 1800 IN TXT "_xmpp-client-

xbosh=https://example.net/http-bind"

•

•

nginx
 # BOSH

 location /http-bind {

 proxy_pass http://127.0.0.1:5280/http-bind;

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For $remote_addr;

 proxy_buffering off;

 tcp_nodelay on;

 }

 # websockets

 location /xmpp-websocket {

 proxy_pass http://127.0.0.1:5280/xmpp-websocket;

 proxy_http_version 1.1;

 proxy_set_header Connection "Upgrade";

 proxy_set_header Upgrade $http_upgrade;

8 of 21

Letsencrypt post-renewal hook

I've added this into /usr/local/etc/letsencrypt/renewal-hooks/post/10-

prosody.sh so whenever the certbot requests new certificates automatically, it'll

get deployed for prosody.

This needs VirtualHost in Prosody to work; if you're not using that, you'll need to

change this.

Get up to date prosody-modules

The one in every distribution repository, including FreeBSD is outdated. You need me

rcurial aka hg to clone it:

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For $remote_addr;

 proxy_read_timeout 900s;

 }

 # http_upload

 location /upload {

 proxy_pass http://127.0.0.1:5280/upload;

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For $remote_addr;

 proxy_buffering off;

 tcp_nodelay on;

 }

bash
#!/usr/bin/env bash

for d in $(cat /usr/local/etc/prosody/prosody.cfg.lua | grep

VirtualHost | sed -r 's/.*"([^"]+)"/\1/'); do

 prosodyctl --root cert import "${d/.conf/}" /usr/

local/etc/letsencrypt/live/

done

/usr/sbin/service prosody restart

bash
mkdir -p /opt/prosody-modules

cd /opt

9 of 21

Install Prosody

As I mentioned, I'm using FreeBSD, so installing Prosody is simple these days:

(optional) luadbi vs SQLite - if you want to use SQLite as backend

In order to have luadbi work with SQLite, it needs to be compiled from ports, because

the one from pkg is only built against MySQL. More so, it's built against MySQL 5.7,

and so far I failed to built it against MySQL 8.0.

You need to compile luadbi to support SQLite3

hg clone https://hg.prosody.im/prosody-modules/ prosody-

modules

bash
pkg install prosody

bash
cd/usr/ports/databases/luadbi

make config

bash
make

make install

10 of 21

Configuring Prosody

Before moving to the prosody config, these probably have to be run:

prosody.lua.cf

bash
these are all ran as the root user

these are probably not required, they are here just in case

mkdir -p /var/run/prosody

chown prosody:prosody /var/run/prosody

mkdir -p /var/db/prosody

chown prosody:prosody /var/db/prosody

this is for the http_upload module

mkdir -p /usr/local/www/prosody

chown prosody:prosody /usr/local/www/prosody

import the letsencrypt certificates using the script from

the

"Letsencrypt post-renewal hook"

above

bash /usr/local/etc/letsencrypt/renewal-hooks/post/10-

prosody.sh

symlink the main certificate for the legacy SSL services,

just in case something needs it

cd /usr/local/etc/prosody/certs

ln -s example.net.crt https.crt

ln -s example.net.key https.key

lua
plugin_paths = { "/opt/prosody-modules" }

admins = { "admin@example.net" }

modules_enabled = {

 "announce"; -- Send announcement to all online users

 "blocklist"; -- Allow users to block communications with

other users

 "bookmarks"; -- XEP-0048: Bookmarks

 "bosh"; -- Enable BOSH clients, aka "Jabber over HTTP"

 "carbons"; -- Keep multiple clients in sync

 "cloud_notify"; -- XEP-0357: Cloud push notifications

11 of 21

 "csi"; -- client state indication

 "csi_simple"; -- Simple Mobile optimizations

 "csi_battery_saver";

 "dialback"; -- s2s dialback support

 "disco"; -- Service discovery

 "http";

 "http_altconnect";

 "http_files"; -- Serve static files from a directory over

HTTP

 "limits"; -- Enable bandwidth limiting for XMPP

connections

 "log_auth"; -- Log failed authentication attempts with

their IP address

 "mam"; -- XEP-0313, Store messages in an archive and

allow users to access it

 "motd"; -- Send a message to users when they log in

 "offline"; -- XEP-0160 XEP-0091, Offline message storage

and delayed delivery support

 "pep"; -- XEP-0163, Enables users to publish their mood,

activity, playing music and more

 "ping"; -- XEP-0199, Replies to XMPP pings with pongs

 "posix"; -- POSIX functionality, sends server to

background, enables syslog, etc.

 "presence"; --

 "private"; -- Private XML storage (for room bookmarks,

etc.)

 "proxy65"; -- Enables a file transfer proxy service which

clients behind NAT can use

 -- if you are planning to use movim - https://movim.eu/ -

you'll need this:

 -- "pubsub"; -- Implements a XEP-0060 pubsub service.

 "register"; -- Allow users to register on this server

using a client and change passwords

 "roster"; -- Allow users to have a roster, aka friends

list

 "saslauth"; -- Authentication for clients and servers.

Recommended if you want to log in.

 "server_contact_info"; -- Publish contact information for

this service

 "smacks"; -- XEP-0198: Reliability and fast reconnects

for XMPP

12 of 21

 "throttle_presence"; -- presence throttling in CSI

 "time"; -- Let others know the time here on this server

 "tls"; -- Add support for secure TLS on c2s/s2s

connections

 "turncredentials"; -- to pass TURN/STUN service that

allows voice/video calls in modern clients

 "uptime"; -- XEP-0012, Report how long server has been

running

 "vcard4"; -- XEP-0292

 "vcard_legacy"; -- XEP-0398 User Avatar to vCard-Based

Avatars Conversion

 "version"; -- Replies to server version requests

 "watchregistrations"; -- Alert admins of registrations

 "websocket"; -- XMPP over WebSockets; useful for web/JS

clients

 "welcome"; -- Welcome users who register accounts

}

modules_disabled = {

}

allow_registration = false;

daemonize = true;

pidfile = "/var/run/prosody/prosody.pid";

legacy_ssl_ports = { 5223 }

legacy_ssl_ssl = {

 key = "certs/https.key";

 certificate = "certs/https.crt";

}

c2s_require_encryption = true;

s2s_require_encryption = true;

s2s_secure_auth = true;

auth_append_host = true;

pep_max_items = 10000

-- see https://groups.google.com/g/prosody-users/c/U1LN78jhh_A

network_default_read_size = "*a"

13 of 21

trusted_proxies = { "127.0.0.1", "::1" }

storage = "internal"

-- note: you can, and probably should use an SQL backend

-- but this was not covered in the tutorial. If you were

-- to use MySQL:

--storage = "sql"

--sql = {

-- driver = "MySQL";

-- database = "prosody";

-- host = "localhost";

-- port = 3306;

-- username = "prosody";

-- password = "acbd542f-9009-46e4-9c01-a5a75092160f";

--}

-- or if it's SQLite:

--sql = {

-- driver = "SQLite3";

-- database = "prosody.sqlite";

--}

-- Logging configuration

log = {

 info = "*syslog";

}

-- Certificates

certificates = "certs";

-- BOSH

http_ports = { 5280 }

http_interfaces = { "*" }

https_ports = { 5281 }

https_interfaces = { "*" }

cross_domain_bosh = true

consider_bosh_secure = true

cross_domain_websocket = true

-- Smacks and cloud notify

push_notification_with_body = true

14 of 21

push_notification_with_sender = true

smacks_hibernation_time = 86400

-- Server contact info

-- don't forget to either create an admin@example.net email

account

-- or to replace these with the real admin email

contact_info = {

 abuse = { "mailto:admin@example.net",

"xmpp:admin@example.net" };

 admin = { "mailto:admin@example.net",

"xmpp:admin@example.net" };

 security = { "mailto:admin@example.net",

"xmpp:admin@example.net" };

 support = { "mailto:admin@example.net",

"xmpp:admin@example.net" };

};

-- Limits

limits = {

 c2s = {

 rate = "100kb/s";

 burst = "2s";

 };

 s2sin = {

 rate = "100kb/s";

 burst = "5s";

 };

}

-- Registration watch

-- so you'll get alerted if anyone registers on your server

registration_watchers = { "admin@example.net" }

-- Proxy

-- this is barely ever used since http_upload, but could come

useful

proxy65_ports = { 5000 }

proxy65_address = "YOUR.EXTERNAL.IP.ADDRESS"

-- http_upload

15 of 21

http_upload_path = "/usr/local/www/prosody"

http_upload_file_size_limit = 10485760

-- TURN/STUN

-- for voice/video; it needs another, external service, see

later

turncredentials_secret = "CHANGE-THIS-TO-A-LONG-SECRET-WE-

WILL-NEED-IT-IN-THE-TURNSERVER";

turncredentials_ttl = 86400;

turncredentials_host = "YOUR.SERVER.FQDN";

turncredentials_port = 3478

-- this is the setting that needs to be turned on to make

your server

-- accept registrations

-- without this setting, you can still create users manually,

-- on the server itself.

-- allow_registration = true;

-- Virtual hosts

VirtualHost "example.net"

 -- if you are running dovecot as an imap server on the

same host

 -- and it already has authentication configured, use can

use this:

 -- authentication = "dovecot"

 -- dovecot_auth_host = "127.0.0.1"

 -- dovecot_auth_port = "9993"

 -- but then you are limited to the users who exist in

dovecot.

 -- Alternatively, you can stick to:

 authentication = "internal_hashed"

 -- this is telling the built-in webserver what to really

use for URLS

 http_external_url = "https://example.net/"

 http_host = "example.net"

 -- this is the http_upload module to exchange files

 Component "upload.example.net" "http_upload"

 -- some things need to be defined per component,

these are one of them:

16 of 21

Start the prosody server

On most systems service prosody start should do.

Don't forget to either create the admin@example.net user, or change the value in

the config to one that exists, and can receive alerts:

Install coturn TURNserver (needed for voice/video)

Again, depending on your system. On FreeBSD:

 http_external_url = "https://example.net/"

 http_host = "example.net"

 -- probably superseeded by http_upload, but could come

useful for old clients

 Component "proxy.example.net" "proxy65"

 -- this is to have multi user chats, aka rooms, aka

groupchat

 Component "groupchat.example.net" "muc"

 modules_enabled = {

 "muc_mam", -- For XEP-0313

 "vcard_muc" -- For XEP-0153

 }

 -- If you're using movim - https://movim.eu/

 -- or if you're planning to use this XMPP server as an IoT

hub:

 -- Component "pubsub.example.net" "pubsub"

 -- pubsub_max_items = 10000

bash
prosodyctl adduser admin@example.net

bash
pkg install coturn

17 of 21

Configure TURN for voice/video

This setup is for a server which is on the internet directly, with a public facing IP

address.

turnserver.conf

Open firewall ports

I hope you have a firewall if you have an internet facing server. This is a snippet from

my ipfw list

ini
listening-port=3478

tls-listening-port=5349

listening-ip=0.0.0.0

min-port=49152

max-port=65535

use-auth-secret

static-auth-secret=CHANGE-THIS-TO-A-LONG-SECRET-WE-WILL-NEED-

IT-IN-THE-TURNSERVER

server-name=example.net

realm=example.net

cert=/usr/local/etc/prosody/example.net.crt

pkey=/usr/local/etc/prosody/example.net.key

syslog

proc-user=prosody

proc-group=prosody

bash
ipfw add 03600 allow tcp from any to me 5222

ipfw add 03700 allow tcp from any to me 5223

ipfw add 03800 allow tcp from any to me 5269

ipfw add 04100 allow tcp from any to me 5000

ipfw add 04700 allow tcp from any to me 3478

ipfw add 04800 allow udp from any to me 3478

ipfw add 04900 allow tcp from any to me 5349

ipfw add 05000 allow udp from any to me 5349

ipfw add 05200 allow udp from any to me 49152-65535

ipfw add 05300 allow tcp from any to me 49152-65535

18 of 21

And in my /etc/rc.conf (note: it contains the TCP port 22, SSH as well, in case

you copy-pasted it, to prevent anyone from locking them out from their server. If you

don't need it, remove it):

bash
firewall_script="/etc/rc.firewall"

firewall_type="workstation"

firewall_myservices="22/tcp 5222/tcp 5223/tcp 5269/tcp 5000/

tcp 3478/tcp 3478/udp 5349/tcp 5349/udp 49152-65535/udp

49152-65535/tcp"

firewall_allowservices="any"

firewall_logging="YES"

firewall_logdeny="YES"

firewall_enable="YES"

firewall_quiet="YES"

19 of 21

Closing words

Running a service is not a simple task, but all of the above is possible to run on a

Raspberry Pi, at home, with no extra costs on your existing internet connection - that

is if your service provider allows you to run a server. If you have a dynamic IP

address, you'll need to be able to change the DNS entries according to it, and fast.

DigitalOcean[^15] offers free DNS service and has an API the allows one to easily alter

the needed entries, but it is definitely simpler if you have a fixed IP at home, or if you

rent a VPS or a server that has a fixed IP.

For more documentation, https://prosody.im/doc is a wonderful resource, but it's a bit

hard to find what you're looking for on it. If you want to test your XMPP server, https://

compliance.conversations.im/ offers such a service.

If you spot any mistakes, or have any improvement recommendations, do not hesitate,

let me know!

Good luck, and don't forget to spread the word of your artisan service!

Links

https://www.trillian.im/

https://pidgin.im/

https://sourceforge.net/projects/miranda/

https://github.com/petermolnar/awesome-pidgin-plugins

https://xmpp.org/

http://googletalk.blogspot.com/2006/01/xmpp-federation.html

https://www.lifewire.com/set-up-gmail-account-with-macs-mail-

application-2260069

https://k9mail.app/documentation/accounts/providerSettings.html

https://www.elliott.org/blog/banned-from-facebook-permanently-how/

https://omemo.top/

https://prosody.im/doc/jingle

https://astrachat.com/

https://www.freebsd.org/

https://movim.eu/

https://www.digitalocean.com/

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

20 of 21

https://prosody.im/doc
https://compliance.conversations.im/
https://compliance.conversations.im/
https://www.trillian.im/
https://www.trillian.im/
https://pidgin.im/
https://pidgin.im/
https://sourceforge.net/projects/miranda/
https://sourceforge.net/projects/miranda/
https://github.com/petermolnar/awesome-pidgin-plugins
https://github.com/petermolnar/awesome-pidgin-plugins
https://xmpp.org/
https://xmpp.org/
http://googletalk.blogspot.com/2006/01/xmpp-federation.html
http://googletalk.blogspot.com/2006/01/xmpp-federation.html
https://www.lifewire.com/set-up-gmail-account-with-macs-mail-application-2260069
https://www.lifewire.com/set-up-gmail-account-with-macs-mail-application-2260069
https://www.lifewire.com/set-up-gmail-account-with-macs-mail-application-2260069
https://k9mail.app/documentation/accounts/providerSettings.html
https://k9mail.app/documentation/accounts/providerSettings.html
https://www.elliott.org/blog/banned-from-facebook-permanently-how/
https://www.elliott.org/blog/banned-from-facebook-permanently-how/
https://omemo.top/
https://omemo.top/
https://prosody.im/doc/jingle
https://prosody.im/doc/jingle
https://astrachat.com/
https://astrachat.com/
https://www.freebsd.org/
https://www.freebsd.org/
https://movim.eu/
https://movim.eu/
https://www.digitalocean.com/
https://www.digitalocean.com/

Created by Peter Molnar <mail@petermolnar.net>, published at 2021-01-25 19:00

UTC, last modified at 2021-10-31 15:57 UTC , to canonical URL https://

petermolnar.net/article/xmpp/ , licensed under CC-BY-4.0 .

21 of 21

https://petermolnar.net/
https://petermolnar.net/
mailto:mail@petermolnar.net
mailto:mail@petermolnar.net
https://petermolnar.net/article/xmpp/
https://petermolnar.net/article/xmpp/
https://spdx.org/licenses/CC-BY-4.0.html
https://brid.gy/publish/mastodon

	Run your artisan instant messaging service for your friends & family
	Chat systems should be able to talk across one another, why are they not?
	What can be done to address the fragmented nature of instant messaging?
	What are the networks capable of talking to each other?

	About modern XMPP clients
	The clients I'd recommend these days

	Running a service: prosody behind nginx
	Notes and warnings
	Prerequisites: access to DNS configuration
	Base A (and AAAA records, if possible)
	CNAMEs for subdomains used by components
	Service records for the XMPP clients
	TXT record for BOSH

	Prerequisites: nginx and SSL (letsencrypt) certificates
	nginx configuration to act as reverse-proxy for Prosody
	Letsencrypt post-renewal hook
	Get up to date prosody-modules
	Install Prosody
	(optional) luadbi vs SQLite - if you want to use SQLite as backend
	Configuring Prosody
	Start the prosody server
	Install coturn TURNserver (needed for voice/video)
	Configure TURN for voice/video
	Open firewall ports

	Closing words

